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Presentation in Essence
Problem: Growing use of mobile code among heterogeneous 
platforms increases the need to predict and control CPU usage, 
while simultaneously increasing the challenge of doing so.

Approach: We devised a method to model CPU demands by mobile 
code distributed among heterogeneous nodes, and we evaluated our
method when applied to predict and control CPU use in active
networks, which represent an advanced application of mobile code.

Results: Our method yielded improved performance in predicting
CPU demand and enabled more precise control of CPU usage in
a heterogeneous active network. (Our MILCOM paper addresses
only the prediction improvements.)

Impact:  Many distributed applications rely increasingly on mobile 
code. Our work can help to improve resource estimation and control in 
such applications. (But additional research is needed.)

(more information available at http://w3.antd.nist.gov/active-nets/)
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The  Problem
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Growing Population of Mobile Programs 
on Heterogeneous Platforms
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Sources of Variability in Execution Environment and System Calls
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Our Approach to Solve the Problem
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Our Approach to Modeling CPU Demands
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Our Model Predicts CPU Demands with Increased Accuracy
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Evaluate Our Approach Applied to Control CPU Usage 
in a Heterogeneous Active Network

Goals: (1) Show reduced CPU usage by terminating malicious packets earlier AND
(2) Show fewer terminations of good packets
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Results for CPU-Control Experiment 
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Evaluate Our Approach Applied to Predict CPU Demand 
in a Heterogeneous Active Network
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Active Virtual Network Management Prediction (AVNMP)

Experiment #1: CPU predictions based on average load on sender node and then
transformed use processor-speed ratio

Experiment #2: CPU predictions obtained with NIST model 
For both experiments: tolerance before rollback = 10 %.
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Results for CPU-Prediction Experiments
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Future Research

Improve NIST Models
Space-Time Efficiency
Account for Node-Dependent Conditions
Characterize Error Bounds

Investigate Alternate Models
White-box Model
Lower-Complexity Analytically Tractable Models
Models that Learn

Improve AVNMP Performance
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Presentation in Summary
Problem: Growing use of mobile code among heterogeneous 
platforms increases the need to predict and control CPU usage, 
while simultaneously increasing the challenge of doing so.

Approach: We devised a method to model CPU demands by mobile 
code distributed among heterogeneous nodes, and we evaluated our
method when applied to predict and control CPU use in active
networks, which represent an advanced application of mobile code.

Results: Our method yielded improved performance in predicting
CPU demand and enabled more precise control of CPU usage in
a heterogeneous active network. (Our MILCOM paper addresses
only the prediction improvements.)

Impact:  Many distributed applications rely increasingly on mobile 
code. Our work can help to improve resource estimation and control in 
such applications. (But additional research is needed.)

(more information available at http://w3.antd.nist.gov/active-nets/)


